

Tokas and Lebeau, Network Communication in C++Builder 2009, Part II Volume 13, Number 2—February 2009

ISSN 1093-2097 12 C++Builder Developer’s Journal

ast month’s article described specific changes

that need to be applied in C++ Builder 2009

code to work with network communications

that are based on ideas in previous articles. That ar-

ticle triggered a difference of opinion between George

Tokas and Remy Lebeau in the Journal’s discussion

forums.

Who are these people?
George is a contributing editor of the Journal. As you

may have read in past articles, he has expertise in

graphics, multimedia, and network communications.

Remy is a member of TeamB [1] and is on the de-

velopment team for the open-source Indy communi-

cations library [2]. He has extensive experience in

network communications.

As you can understand, both have significant ex-

perience, and whatever both state has a point. Differ-

ence of opinions is not something bad. Most of the

time, it leads to evolution.

George’s socket history
In 1999, George started experimenting with socket

communications. At that time, there was the ―Chat‖

example shipped with C++Builder, which was located

under the ―Examples‖ subdirectory of C++ Builder’s

installation. Binary-based communication was not

mentioned in the docs nor were there any examples.

(Around the same time, early versions of Indy ap-

peared, stable but a bit out of his league at that time.)

Also, there were no TCP socket components that sup-

ported the IPv6 protocol.

C++ Builder 6 and earlier version had TClient-

Socket and TServerSocket components installed on

the ―Internet‖ tab of the Component Palette. These

components were later deprecated in favor of new

TTcpClient and TTcpServer components in Bor-

land’s CLX cross-platform framework. However,

these latter components were not well-suited for gen-

eral-purpose use, and have since been replaced with

Indy. The legacy TClientSocket and TServerSocket

components are not installed by default anymore, but

can be installed manually if needed, as described in

previous articles.

George’s choice at that time (and until now) has

been to use the TClientSocket and TServerSocket

components. He had to decide between the available

socket configurations: to use blocking or non-blocking

sockets. Based on his experience as an electronic engi-

neer—20 years of field experience before 1999—and

the physical design of the network end of his commu-

nications (RJ45 style ―serial‖ exchange) he saw no rea-

son not to use a non-blocking configuration. In addi-

tion, the size of his data packets at the time was less

than 100 bytes each, which tends to work well with

non-blocking sockets.

Using a non-blocking configuration over a LAN

worked perfectly for George without any corruption

of packets, and in his experience has worked with

100% success all these years. The only problem he

found was that when PCs go into power-save mode,

data packets might be lost. Because of that, he added

―keep alive‖ functions on both sides of his communi-

cations, which exchange strings at random periods

between 2 to 4 minutes of idle activity.

As the years passed, he added security to his

L

Network
Communication in
C++Builder 2009,
Part II
By George Tokas and Remy Lebeau

Versions: C++Builder 2009

Volume 13, Number 2—February 2009 Tokas and Lebeau, Network Communication in C++Builder 2009, Part II

C++Builder Developer’s Journal 13 www.bcbjournal.com

communications, and the strings grew larger and

larger. In one project, he had the following format ex-

changed:

1. String: 3 to 20 bytes of garbage data + Start string

sequence + the actual String + End string se-

quence + 5 to 20 bytes of garbage data.

2. This string was encrypted using DEC and one

algorithm and at this time, the string has just the

encrypted data.

3. To that, a hash string sequence separator was

added, along with the hash sequence string itself

(usually 40 bytes).

This process was employed in multiple applications

using other encryption and hashing algorithms, and

the string about to be transmitted was larger than 1

KB. Even in that ―extreme‖ condition, there were no

problems, not even a single packet drop. The time the

server side of his communications needed to process

such a scenario and respond back (decrypt, check the

hash, decrypt again, etc.) was less than 1 ms using a

humble 1.8 Ghz PC.

Expanding the network, he used his scenario on

an ISDN 64 Kb connection again without any prob-

lems. The communication was expanded to the Inter-

net without any problem as well. Then ADSL came,

and for testing reasons, he stretched an early

1MB/256KB connection to its limit using a LAN that

had many machines using 99.99% of the bandwidth to

the Internet, with one machine acting as a server ap-

plication. Again, no loss of packets occurred, even

when that machine used part of the network band-

width for reasons other than the server application.

In all those years, George considered the

TClientSocket and TServerSocket components as

just tools. Only when he started using the user class

approach in his server-side code did he have to look

inside the source code for those components. There,

he found out that all communications are actually bi-

nary even though he was using strings.

Remy’s perspective on the
VCL socket components
When used properly, the TClientSocket and TSer-

verSocket components work well to transmit and

receive string data and binary data alike. Remy has

been using them almost as long as George has, in both

blocking and non-blocking configurations, with much

success.

 However, by studying the VCL source code, Re-

my has learned that you must take into account how

these components work internally. More importantly,

you have to understand how sockets handle data

packets, or else your socket I/O will have hidden

bugs in it. You may not see problems occur in your

daily communications (like George), but the potential

for data loss and data corruption will still be present

nonetheless. It is only a matter of time before those

bugs will cause problems in your communications,

and you won’t know why if you do not take the ne-

cessary precautions beforehand.

The SendText() and ReceiveText() methods of

the TCustomWinSocket class transmit and receive

string values over the socket. They are implemented

in SCKTCOMP.PAS, and are particularly troublesome

in all versions of C++Builder. The rest of this article

will explain reasons why.

The SendText() method

The SendText() method is implemented in

C++Builder 2007 and earlier, and in the initial release

of C++Builder 2009, as follows:

function TCustomWinSocket.SendText(
 const s: string): Integer;
begin

 Result := SendBuf(Pointer(S)^,
 Length(S));

end;

It is important to point out that the return value indi-

cates the number of bytes that were sent by the socket,

not the number of characters. In C++ Builder 2007 and

earlier, Delphi’s string data type mapped to Ansi-

String, which uses single-byte characters, so the re-

sult was effectively the same as the number of charac-

ters. In C++ Builder 2009, however, the string data

type now maps to a new UnicodeString type [3]-[6].

This means the above implementation is broken in

early releases of C++ Builder 2009!

 Fortunately, this bug was partially fixed in a later

update, as follows:

function TCustomWinSocket.SendText(
 const s: AnsiString): Integer;
begin

 Result := SendBuf(Pointer(S)^,
 Length(S) * SizeOf(AnsiChar));
end;

Tokas and Lebeau, Network Communication in C++Builder 2009, Part II Volume 13, Number 2—February 2009

ISSN 1093-2097 14 C++Builder Developer’s Journal

However, this fix introduces a new bug in C++Builder

2009 (that has not been fixed yet at the time of this

writing). AnsiString is now codepage-aware, so it is

possible to store Unicode data into an AnsiString

using any codepage that the OS supports. Assigning

any string (Ansi or Unicode) that uses one codepage

to any other string (Ansi or Unicode) that uses a dif-

ferent codepage will automatically perform the neces-

sary data conversion for you. However, this causes a

problem for SendText(). An AnsiString variable

that does not have an explicit codepage associated

with it at compile-time (such as the input parameter of

SendText()) will use the OS default codepage. This

means that any string passed to SendText() will now

perform a data conversion to the OS default codepage

before transmission. There is no guarantee that the

receiver is using the same default codepage, and the

receiver has no way of knowing which codepage was

actually used in the transmitted data. So, that is one

potential area of data loss, as the characters actually

transmitted may be different form the characters that

are passed to SendText().

To make SendText() behave correctly in C++

Builder 2009, while maintaining backward compatibil-

ity with earlier versions, CodeGear should have de-

clared SendText() to accept a RawByteString (which

is another new string type in C++ Builder 2009) in-

stead of an AnsiString, like so:

function TCustomWinSocket.SendText(
 const s: RawByteString): Integer;
begin

 Result := SendBuf(Pointer(S)^,
 Length(S) * SizeOf(AnsiChar));

end;

Without going into details, just know that assigning

any AnsiString value, regardless of its codepage, to a

RawByteString will not perform a data conversion.

Using RawByteString would have allowed Send-

Text() to transmit any kind of Ansi data correctly.

The SendBuf() method

SendText() has another more subtle bug in it, in all

versions of C++ Builder, because it misuses the Send-

Buf() method. SendBuf() is implemented in all

C++Builder versions as follows:

function TCustomWinSocket.SendBuf(

 var Buf; Count: Integer): Integer;
var

 ErrorCode: Integer;
begin

 Lock;
 try

 Result := 0;
 if not FConnected then Exit;
 Result := send(FSocket, Buf, Count, 0);

 if Result = SOCKET_ERROR then
 begin
 ErrorCode := WSAGetLastError;

 if (ErrorCode <> WSAEWOULDBLOCK) then
 begin

 Error(Self, eeSend, ErrorCode);
 Disconnect(FSocket);
 if ErrorCode <> 0 then

 raise ESocketError.CreateResFmt(
 @sWindowsSocketError,
 [SysErrorMessage(ErrorCode),

 ErrorCode, 'send']);
 end;

 end;
 finally
 Unlock;

 end;
end;

The WinSock API send() function is being called only

one time to send the entire data block. As long as the

data that are being sent fits within a single TCP/IP

packet, everything is fine. But if the data do not fit, the

send() function only sends what it can, leaving the

remaining portion of the data unsent. This is a very

important fact in socket programming, regardless of

whether a blocking or non-blocking configuration is

used. The return value of the send() function indi-

cates the actual number of bytes that were sent. It is

the caller’s responsibility to check that value and call

send() again if there are bytes still waiting to be sent.

This applies to all uses of send(), not just for string

data.

This behavior of the send() function inside of

SendBuf() means that SendText() has another po-

tential area for data loss: It does not call SendBuf()

more than one time if the input string is too long for

the socket to transmit in a single TCP/IP packet. This

is especially important when send() returns SOCK-

ET_ERROR and WSAGetLastError() then returns

WSAEWOULDBLOCK, which indicates that the input string

was not sent at all.

Your code needs to look at the return value of

SendText () and act accordingly. If the return value

is –1 (and no OnError event was fired), then re-send

the same string again as-is. If the return value is 0,

either the socket has been disconnected, or the string

was empty. If the return value is greater than 0 but

Volume 13, Number 2—February 2009 Tokas and Lebeau, Network Communication in C++Builder 2009, Part II

C++Builder Developer’s Journal 15 www.bcbjournal.com

less than the length of the string, then ignore the cha-

racters that were successfully sent and call Send-

Text() again with a new string containing just the

remaining characters. Otherwise, the entire string has

been sent.

The above approach works fine in C++Builder

2007 and earlier, but unfortunately can be problematic

in C++ Builder 2009 because of the Unicode bugs

mentioned above.

The ReceiveText() method

Similar problems exist in the ReceiveText() method,

which is implemented in all versions of C++Builder as

follows:

function TCustomWinSocket.ReceiveText:
 string;

begin
 SetLength(Result,

 ReceiveBuf(Pointer(nil)^, -1));
 SetLength(Result,
 ReceiveBuf(Pointer(Result)^,

 Length(Result)));
end;

ReceiveText() does not work correctly in

C++Builder 2009 because of the new UnicodeString

mapping of Delphi’s string data type. Unlike Send-

Text(), ReceiveText() was not updated to use An-

siString, so it ends up allocating memory for a UTF-

16 Unicode string, but then fills it half-way (at most)

with single-byte characters. The result is garbage.

The ReceiveBuf() method

A more subtle bug, in all versions of C++Builder, is

again a misuse of the WinSock API, this time with the

ReceiveBuf() method, which is implemented in

C++Builder 2006 and later as follows:

function TCustomWinSocket.ReceiveBuf(

 var Buf; Count: Integer): Integer;
var

 ErrorCode, iCount: Integer;
begin
 Lock;

 try
 Result := 0;
 if (Count = -1) and FConnected then

 ioctlsocket(FSocket, FIONREAD,
 Longint(Result))

 else begin
 if not FConnected then Exit;
 if ioctlsocket(FSocket, FIONREAD,

 iCount) = 0 then

 begin
 if (iCount > 0) and (iCount < Count)

 then
 Count := iCount;

 end;

 Result :=

 recv(FSocket, Buf, Count, 0);
 if Result = SOCKET_ERROR then
 begin

 ErrorCode := WSAGetLastError;
 if ErrorCode <> WSAEWOULDBLOCK then

 begin
 Error(Self, eeReceive,
 ErrorCode);

 Disconnect(FSocket);
 if ErrorCode <> 0 then
 raise ESocketError.CreateResFmt(

 @sWindowsSocketError,
 [SysErrorMessage(ErrorCode),

 ErrorCode, 'recv']);
 end;
 end;

 end;
 finally
 Unlock;

 end;
end;

ReceiveBuf() is implemented slightly differently in

earlier versions of C++Builder 2006, but the differenc-

es are not enough to change the outcome of the bug.

In both cases, the problem is similar to that of

SendText(). ReceiveBuf() is not called enough

times to receive all of the data for a given string if it

could not fit in a single TCP/IP packet. Receive-

Text() has ReceiveBuf() call the WinSock API

ioctlsocket() function to find out how many bytes

are currently pending in the socket’s incoming data

buffer, and then call recv() to actually read them. If

the network connection is slow, or if ReceiveText()

is simply called before all of the data have been re-

ceived, ReceiveBuf() only reads the bytes that are

currently available on the socket, if any, and returns

the number of bytes that were actually received. This

is another potential area of data loss, as Receive-

Text() does not wait for all of the data to arrive.

Unlike when using SendText(), your code cannot

look at the return value of ReceiveText() in order to

act accordingly. It will have to call ReceiveBuf() di-

rectly instead. If the return value is –1, or if the return

value is 0 and the Count parameter is –1, then no data

are yet available but the connection is still alive. If the

return value is 0 and the Count parameter is not –1,

either the socket has been disconnected, or the Count

parameter was 0. If the return value is greater than 0,

Tokas and Lebeau, Network Communication in C++Builder 2009, Part II Volume 13, Number 2—February 2009

ISSN 1093-2097 16 C++Builder Developer’s Journal

then that many bytes were read. If you are expecting

more bytes, then you have to call ReceiveBuf() again

with an adjusted Count parameter.

A potential area of data corruption exists when

receiving data. If the sending party sends multiple

data packets close together, ReceiveText() might

end up receiving them together (due to the way sock-

ets cache outbound data into the most efficient data

packets they can send), thus returning a single string

that actually contains multiple (possibly partial) data

packets in it. Your code may end up ignoring the extra

data, thus not having it available for later processing.

Worse, it may end up processing the entire string as a

whole, causing incorrect results, e.g., if hashes or en-

cryption are invoked.

Working around the bugs
Because a socket can transmit and receive large data

blocks in smaller packets, and can receive multiple

data blocks together, SendText() and ReceiveText()

are both places where data loss and/or corruption can

occur, in all versions of C++Builder, because neither

of them really handle transmissions correctly (Un-

icode bugs aside). A better approach would be to

simply avoid SendText() and ReceiveText() alto-

gether and use SendBuf() and ReceiveBuf() directly

for everything—which George discussed in Part I of

this series. This technique will work in all versions of

C++Builder, for both blocking and non-blocking con-

figurations, and for string and binary data alike. (For

blocking configurations, you actually have to use the

TWinSocketStream class instead, but that is a separate

detail.) Both methods accept raw memory pointers as

parameters, so you can send whatever you want, and

receive whatever you want, without worry of any da-

ta conversions occurring that you do not perform

yourself.

Here’s the evolution: When sending data, keep

track of how many bytes send() actually accepts each

time, and keep calling send() until you reach the end

of your outgoing data. When receiving data, keep

track of how many bytes recv() actually reads each

time, and keep calling recv() until you reach the end

of the expected data. This way, you will be in a better

position to handle errors and partial transmissions

more accurately.

 Yet, how do you know how much incoming data

to expect, so you know how much reading to do?

Well, there are three ways to handle that.

The best way is to send the data size before send-

ing the actual data. The receiver can then read that

size first, allocate a memory block of that size, and

keep reading bytes into it until it fills up. However,

that is not always possible in all protocols (like most

Internet text-based protocols such as SMTP/POP3,

NNTP, FTP, etc.).

Another option is to include some kind of unique

delimiter at the end of each data block you send,

where the delimiter does not appear in the data itself

(if it does, it would have to be escaped). The receiver

can then read all incoming bytes into an intermediate

buffer, and when the delimiter is encountered then

process and remove the front bytes from that buffer

up to, and including, the delimiter, leaving behind

any remaining bytes that have already been received

for subsequent packet(s) for later read operations to

consume.

The final option is a combination of the two: Use a

fixed-length or delimited header that contains the da-

ta size should. This header information would pre-

cede the actual data (HTTP and many binary proto-

cols do this).

Conclusions
Both authors have a point, based on each one’s expe-

rience. Differences of opinions lead to productive dis-

cussion, which— like the discussion presented here—

leads to evolution. This evolution is based on coopera-

tion and mutual understanding.

From George Tokas, a special thanks to Remy Le-

beau for this insightful discussion.

Contact George at gtokas@tokas-bros.eu

Contact Remy at remy@lebeausoftware.org

References
1. http://www.teamb.com

2. http://www.indyproject.org

3. http://edn.embarcadero.com/article/38437

4. http://edn.embarcadero.com/article/38498

5. http://edn.embarcadero.com/article/38693

6. http://edn.embarcadero.com/article/38980

mailto:gtokas@tokas-bros.eu
http://www.teamb.com/
http://www.indyproject.org/
http://edn.embarcadero.com/article/38437
http://edn.embarcadero.com/article/38498
http://edn.embarcadero.com/article/38693
http://edn.embarcadero.com/article/38980

